A constraint-based model of dynamic island biogeography in the face of global change

"mountain island in a desert sea" – Dodge 1943

Robbie Burger
Bridging Biodiversity and Conservation Science
Ecology and Evolutionary Biology
University of Arizona
Assist. Prof. Biology, University of KY (Fall 2021)
Madrean Pine-Oak Woodlands

Tucson

skyislandalliance.org

madreanpineoakwoodland.wordpress.com
Island biogeography theory

Species richness, R_i, of an island is a function of:

$$R_i = C - E$$

$C = $ Colonization
$E = $ Extinction
But how does area and connectivity change over glacial cycles?

Art by Trevor Fristoe
A Constraint-based model of Dynamic Island Biogeography (C-DIB)

Motivating question
How do species traits predict insular biodiversity as islands cycle through time?
A Constraint-based model of Dynamic Island Biogeography (C-DIB)

Motivating question
How do species traits predict insular biodiversity as islands cycle through time?

1. Populations of a single species

2. Candidate species for community assembly
Populations of a single species

Traits:

1. Influence *colonization* probability.

 Habitat suitability between island and source.

 Dispersal/physiological tolerance

2. Influence *extinction* probability.

 Minimum area required to sustain population.

 Body size/trophic level
Populations of a single species

Suitability

No Yes

Minimum area

A B C D

T3
Populations of a single species

- **Suitability**
 - No
 - Yes

- **Minimum area**

The diagram shows the distribution of populations with different suitability levels and minimum area requirements.
Populations of a single species
Populations of a single species

T4 Same environment as T2...

...But different distributions
Populations of a single species

T4 Same environment as T2...

...But different distributions
Island process

Extinction – influenced by min area to sustain population
Island process

Extinction – influenced by min area to sustain population

Colonization – influenced by habitat suitability
Species

Area requirement
1 2 3 3 4

Connectivity requirement

Cycle

<table>
<thead>
<tr>
<th>Time</th>
<th>Area</th>
<th>Conn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1a</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>T2a</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Island Dynamics

Area

Connectivity

T1a

T2a

T3a

T4a

T5a
Cycle

<table>
<thead>
<tr>
<th>Time</th>
<th>Area</th>
<th>Conn.</th>
<th>Spp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1a</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T2a</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4a</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T5a</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Island Dynamics

- **T1a**
- **T2a**
- **T3a**
- **T4a**
- **T5a**

Species

- Area requirement: 1, 2, 3, 3, 4
- Connectivity requirement

Hysteresis
How do we test this, really?

- **Allometric scaling**: population size, abundance and generation

\[D \propto M^{-3/4} \]

- **Species distribution modeling**: present, past and future environments

[Map by Gonzalo Pinilla-Buitrago]
Assumptions and caveats

1. No stochasticity

2. Time lags (extinction debts or colonization credits)

3. No biotic interactions

4. No evolution (i.e., niche conservatism)
15 to 20% of all reptile and mammal diversity at risk from climate change
But...are US Madrean bird populations new colonizations?
Acknowledgements

Collaborators
Rob Anderson (CCNY/AMNH)
Ella Vázquez-Domínguez (UNAM)
Elizabeth Arellano (UNAM)
Gonzalo Pinilla-Buitrago (CUNY-CCNY)
Erica E. Johnson (CUNY-CCNY)
Lázaro Guevara (UNAM)
Trevor Fristoe (U Konstanz-Germany)
James Brown (University of New Mexico)
David Breshears (U Arizona, School of Natural Resources and Environment)
Brian Enquist (U Arizona, EEB, and Santa Fe Institute)
Travis Knowles (Francis Marion University)
Meghan Balk (U Arizona)

AIR staff
Maggie Heard
Maya Patterson
Amanda Leinberger
Lori Emler

Funding

Bridging Biodiversity & Conservation Science

Elegant trogon
Chiricahua mnts
SKY ISLAND BIODIVERSITY & CONSERVATION

A WEEKLY WEBINAR SERIES & DISCUSSION IN APRIL FT. DIVERSE SPEAKERS ADDRESSING THE CONSERVATION & MANAGEMENT OF SKY ISLAND BIODIVERSITY IN THE U.S. AND MEXICO.

CO-SPONSORED BY THE BRIDGING BIODIVERSITY & CONSERVATION SCIENCE PROGRAM @ THE UNIVERSITY OF ARIZONA, THE NATIONAL SCIENCE FOUNDATION, & THE CITY COLLEGE OF NEW YORK OF CUNY

Artist

MAYA R. STAHL
Breakout Session Notes

• Discussion Question: How can we leverage existing tools from diverse disciplines to further sky island biodiversity research and conservation (e.g., theory, biodiversity data, computation, field science, collaborative science)? What tools are currently lacking?
A. Continental island

B. Habitat island

C. Fragmentation island

Glacial time scales

Shorter time scales

Burger et al. 2019 Frontiers of Biogeography
What are the past dynamics that lead to biodiversity on sky islands today?